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Abstract—This paper introduces a novel variation of the
n-gram model tailored to generate Javanese gamelan music,
where traditional musical structures are enhanced with positional
information to capture the cyclic and hierarchical nature of
gamelan compositions. The position of each note within the
musical cycle is proposed as a condition for generating sub-
sequent notes, enhancing the accuracy and relevance of the
generated sequences. The model is trained on musical datasets
that include both the notes and their respective positions within
the structure, allowing for a more context-aware prediction of
note sequences. The mathematical framework for the modified
n-gram model is provided for both training and generation. By
combining probabilistic methods with a deeper understanding of
the unique properties of gamelan music, this approach aims to
improve the quality of computer-generated gamelan compositions
while preserving the traditional idiomatic features of the music.
The results demonstrate the potential of this model for use in
computational musicology and automated composition systems
for gamelan music.

Index Terms—Gamelan, n-gram language model

I. INTRODUCTION

Javanese gamelan music, a rich and intricate musical tra-
dition originating in Java, Indonesia, is characterized by its
complex rhythmic structures, layered melodies, and cyclical
forms. The balungan, or the core melody, serves as the foun-
dation of most gamelan compositions, providing a framework
that guides the interplay of various instruments. Despite its
relatively fixed melodic structure, gamelan music is dynamic,
with its patterns evolving over time and influenced by the
interactions between musicians. These unique features present
challenges for computational music generation, as traditional
music models often fail to capture the nuances of such a
structured yet fluid tradition.

Probabilistic models, such as the n-gram model, have been
widely used in language modeling and music generation,
leveraging the statistical dependencies between consecutive
elements in a sequence. In music, n-gram models predict the
next note based on a fixed-length history of preceding notes,
treating them as independent events. However, while n-gram
models are effective in modeling local note dependencies,
they often overlook important contextual factors such as the
position of a note within the larger structure of a composition.
In Javanese gamelan music, the position of a note within the
cycle plays an important role in determining its pitch, rhythm,
and relation to other notes. The cyclical nature of gamelan

compositions further complicates the task, as the music often
returns to earlier motifs and phrases, influencing the patterns
of note sequences.

To address these limitations, I propose a modified version
of the n-gram model that incorporates positional information
into the generation process. By conditioning the generation
of each note not only on the preceding notes but also on its
position within the composition, our model more effectively
captures the structural dependencies that define the rhythmic
and melodic flow of gamelan music. This approach allows
for the generation of more contextually relevant musical
sequences that respect both local dependencies and global
structural patterns.

In this paper, I outline the mathematical framework for
the modified n-gram model, and discuss the benefits of in-
corporating positional information. The purpose of this study
is to contribute to the field of computational musicology
and to offer a tool for generating authentic, context-sensitive
gamelan music that can be used for research, composition and
performance.

II. JAVANESE GAMELAN

Javanese gamelan music is a traditional ensemble music
form from Indonesia, characterized by its rich textures, cyclical
structures, and interlocking patterns. It features a variety
of instruments, including metallophones, gongs, drums, and
stringed instruments, each playing a specific role within the
ensemble. The music is built around a core melody known as
the balungan, which serves as the foundation for other instru-
ments to elaborate upon. The balungan is typically played
by metallophones and represents the skeletal structure of
the composition, guiding the interplay between rhythmic and
melodic layers. There are three types of balungan: balungan
mlaku, balungan nibani, and balungan rangkep [1].

Balungan nibani is characterized by its rhythmic structure,
where every other beat is left empty, resulting in a density that
is half of the regular balungan pulse.

Balungan mlaku, sometimes called balungan mlampah,
maintains a rhythmic density equal to the regular balungan
pulse.

Balungan rangkep, also referred to as balungan ngadhal or
balungan tikel, is a denser form of balungan with a rhythmic
pulse that is double the regular balungan pulse.



III. PROBABILITY

Probability provides a mathematical framework for quanti-
fying the likelihood of events. Random experiments, such as
flipping a coin or rolling a die, produce outcomes that are
uncertain but belong to a well-defined sample space S. Each
subset of S is called an event, and the probability of an event
A is a number between 0 and 1, denoted as P (A). The value
0 represents an impossible event, while 1 indicates certainty.

The classical definition of probability assumes equally likely
outcomes and is calculated as:

P (A) =
|A|
|S|

,

where |A| is the number of favorable outcomes in A, and |S|
is the total number of outcomes in the sample space S.

IV. CONDITIONAL PROBABILITY

Conditional probability measures the likelihood of an event
occurring given that another event has already occurred [4]. It
provides a way to refine predictions by incorporating known
information. Mathematically, the conditional probability of an
event A given B is defined as [5]:

P (A | B) =
P (A ∩B)

P (B)
,

Here, P (A∩B) represents the probability that both A and B
occur simultaneously, while P (B) is the probability that event
B occurs. The condition P (B) > 0 is necessary to ensure
that the conditional probability is well-defined, as it would
not make sense to condition on an event with zero probability.

The formula indicates that to compute the conditional prob-
ability, one must first determine how often both events A and
B happen together and then normalize this by the probability
of event B alone. This normalization adjusts the probability to
account for the known occurrence of B, effectively narrowing
the focus to the cases where B is true. In other words,
conditional probability quantifies how the likelihood of A
changes when we know that B has occurred.

This framework is particularly powerful in domains where
the probability of an event depends on additional contextual
information. In natural language processing, for instance, the
probability of a word in a sequence can depend on the
preceding words, allowing for the prediction of future words
based on context. Similarly, in music, the occurrence of certain
musical elements, such as the pitch or rhythm of a note, can
depend on the preceding notes or the position of the note
within a particular section of the composition.

V. N-GRAM LANGUAGE MODEL

Conditional probability plays a foundational role in word
n-gram language models, which are widely used in natural
language processing (NLP) to predict the likelihood of word
sequences. An n-gram is a contiguous sequence of n words,
and these models aim to estimate the probability of a word
given its preceding context, typically limited to the previous

n − 1 words [3]. This predictive ability is rooted in the
principles of conditional probability.

In the context of text, let W1,W2, . . . ,Wn represent a
sequence of words. The probability of the entire sequence can
be expressed using the chain rule of probability:

P (W1,W2, . . . ,Wn) =

n∏
i=1

P (Wi |W1,W2, . . . ,Wi−1)

This formula illustrates that the probability of a sequence
is decomposed into the product of conditional probabilities of
each word, given its preceding words.

However, modeling the full history of preceding words
(W1,W2, . . . ,Wn−1) is computationally expensive and often
infeasible due to the vast number of possible word combi-
nations. To address this, n-gram models make the Markov
assumption, which simplifies the dependency by considering
only the most recent n−1 words. This reduces the conditional
probability to:

P (Wn |W1,W2, . . . ,Wn−1) ≈ P (Wn |Wn−(N−1), . . . ,Wn−1).

For example: - In a bigram model (N = 2), the probability
of a word depends only on the previous word:

P (Wn |W1,W2, . . . ,Wn−1) ≈ P (Wn |Wn−1).

- In a trigram model (N = 3), the probability of a word
depends on the two preceding words:

P (Wn |W1,W2, . . . ,Wn−1) ≈ P (Wn |Wn−2,Wn−1).

The probability of a sequence of words in an n-gram model
can thus be computed as:

P (W1,W2, . . . ,Wn) =

n∏
i=1

P (Wi |Wi−(n−1), . . . ,Wi−1),

where for the first n − 1 words, appropriate smoothing or
assumptions handle missing context.

Although n-gram models are conceptually simple, their
reliance on conditional probability is a powerful example of
how probabilistic methods can model and predict linguistic
patterns effectively.

VI. MODIFICATION TO THE N-GRAM LANGUAGE MODEL

In musical compositions, the position of a note within a
song carries significant contextual importance. Traditional n-
gram models focus solely on the sequential relationship be-
tween neighboring notes, capturing dependencies within local
windows of n− 1 preceding elements. However, music often
follows structured patterns that evolve over time and across
different sections of a composition. The inclusion of positional
information adds a temporal dimension to the model, enabling
it to account for these broader structural and rhythmic contexts.

In many musical pieces, the placement of notes within
phrases, measures, or beats influences their likelihood and
musical function. For instance, notes that occur at the begin-
ning of a phrase often serve as introductory elements, while
notes at the end are more likely to resolve to stable tones,



such as the tonic or dominant. Similarly, strong beats within a
measure frequently carry chordal tones, whereas weaker beats
may introduce passing or decorative notes. These patterns are
not only sequential but also position-dependent, reflecting the
hierarchical and temporal nature of musical organization.

By conditioning the probability of a note on its posi-
tion in the song in addition to the preceding n − 1 notes,
the model can capture both local dependencies and global
structural trends. The modified conditional probability can be
expressed as P (wt | wt−(n−1), . . . , wt−1,Positiont), where
Positiont represents the location of the note in the song. This
extension acknowledges that a note’s role and likelihood are
not solely dictated by immediate neighbors but also by its
broader context within the composition. Such an approach is
especially valuable for modeling genres with strong rhythmic
or thematic patterns, as it allows the model to learn and predict
musical structures more effectively. Incorporating position as
a condition thus enhances the expressive power of the n-gram
model, aligning it more closely with the nuanced nature of
musical notation.

VII. IMPLEMENTATION

A. Choice of Programming Language and Library
The program is implemented in Python, without the use of

external libraries.

B. Data Structure
The program employs a dictionary data structure to record

the frequency of each n-gram encountered in the training
data. This approach enables efficient storage and retrieval of
frequency counts for various combinations of preceding notes,
positions, and predicted notes.

In the program, each beat is represented as a tuple, allowing
the model to flexibly encode the number of notes within a
single beat. If a beat contains two notes, the tuple includes
two elements, each representing one note. Similarly, a beat
with only one note is represented as a tuple with a single
element, while a beat with four notes is represented as a tuple
with four elements.

C. Training Process
The training process constructs a probabilistic model that

incorporates both the sequence of notes and their positional
information. The input consists of balungan sequences and
their corresponding positional annotations, derived from au-
thentic Javanese gamelan compositions. For each sequence
in the dataset, the algorithm extracts n-grams. Each n-gram
comprises a sequence of n − 1 preceding notes, the current
note to be predicted, and its position within the musical cycle.

The algorithm records the counts of joint occurrences for
every combination of preceding notes, positions, and predicted
notes. These counts are used to compute conditional probabil-
ities by normalizing the joint occurrence counts with respect
to the total occurrences of the corresponding preceding notes
and positions. The result is a probability table that defines
P (note | context, position), which serves as the foundation
for sequence generation.

D. Generation Process

The generation process utilizes the trained model to produce
new balungan sequences. Beginning with an initial state de-
fined by n−1 notes and a position, the algorithm predicts the
next note by sampling from the conditional probability distri-
bution P (note | context, position) derived during training.

After a note is generated, the state is updated by shifting
the sequence window to include the newly generated note and
incrementing the position within the musical cycle. This iter-
ative process continues until a sequence of the desired length
is created. The positional parameter ensures the generated
sequence adheres to the cyclical structure of gamelan composi-
tions, capturing both local dependencies and global positional
contexts. The output is a complete balungan sequence that
aligns with the traditional structural characteristics of Javanese
gamelan music.

Algorithm 1: Training the Modified N-gram Model
with Positional Information
Input: List T : a list of musical sequences.
Output: Dictionary Count: a dictionary recording the

frequency of all n− 1 and n-grams.
for sequence ∈ training data do

for note Nt at position pt do
Count

(
Nt−(n−1), . . . , Nt,Positiont

)
+= 1

Count
(
Nt−(n−1), . . . , Nt−1,Positiont

)
+= 1

end
end

Algorithm 2: Generating New Music Notation Using
the Modified N-gram Model
Input: Dictionary D: a dictionary recording the

frequency of all n− 1 and n-grams.
L: length of musical sequence to be generated

Output: Musical sequence S.
1. S ← random starting sequence
2. for each step in the generation do

Nt ← random note with probability

P (Nt | Nt−(n−1), . . . , Nt−1,Positiont)

S += Nt.
end

VIII. DATASET

The dataset used for this study is sourced from gamelan-
bvg.com, a resource dedicated to providing comprehensive
collections of Javanese gamelan compositions and notations.
This dataset serves as the foundation for training the modified
n-gram model, offering a rich corpus of traditional balungan
notations and their corresponding structures. By leveraging
this dataset, the program ensures that the generated balun-
gan sequences align closely with the stylistic and structural
characteristics of authentic Javanese gamelan music.



but for the purpose of this study, the dataset is limited to
composition in the Ladrang form, and with laras pelog pathet
lima. This limitation is imposed to ensure the accuracy of
the model, as different musical forms within gamelan may
have distinct structural characteristics. The Ladrang form, with
its specific colotomic structure and rhythmic subdivisions,
provides a consistent and well-defined dataset for training the
model. Using only laras pelog pathet lima further narrows the
scope to a particular tuning system, ensuring that the gener-
ated balungan sequences align with the traditional tonal and
rhythmic conventions of Ladrang compositions in this tuning.
Although the program can be applied to other forms, extending
the dataset to include them at once introduce variability in
structure, which could impact the accuracy and reliability of
the generated sequences.

In this study, the dataset is divided into two parts, the buka
and the section that follows it, for the purpose of training the
model more effectively. The reason for this division is that the
buka serves as an introductory section with a distinct musical
structure and simpler patterns compared to the main body of
the composition. By training the model on the buka separately,
it allows the model to learn the specific characteristics of
the introductory material, such as its rhythmic and melodic
patterns. Afterward, the model is trained on the remaining
section, which follows a more structured form and involves a
fuller, more complex arrangement of instruments and rhythmic
patterns. This separation ensures that the model can capture
the unique features of both the buka and the main section,
improving its overall ability to generate or predict the musical
patterns in each part more accurately. Hence, training the
model on the buka and the following section separately helps
to avoid confusion between the simpler introductory material
and the more intricate patterns of the main composition.

IX. RESULT
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The notation above represents an example of generated music
notation derived from the programmatic application of the
modified n-gram model. Each number corresponds to a note
or set of notes for a single beat in the musical structure of
Javanese gamelan, specifically within the Ladrang form, in
laras pelog pathet lima.

In this context, the generated notation captures the skeletal
melody (balungan), which serves as the foundation for elab-
oration by other instruments in the ensemble.

The musical sequence represents the output of the program,
which combines statistical modeling and the syntactical rules
of gamelan music to generate plausible melodic patterns. This
approach ensures that the notation adheres to the cultural and

structural conventions of the Javanese Ladrang form while
providing a programmatic framework for automatic music
generation.

X. CONCLUSION

The application of a modified n-gram model to generate
balungan notation for Javanese gamelan music demonstrates
the potential of computational methods in modeling and syn-
thesizing traditional music. By incorporating both sequential
dependencies and positional information, the model effectively
captures the nuanced structures characteristic of the Ladrang
form in the laras pelog pathet lima tuning system. The
use of statistical modeling allows the generated music to
adhere closely to the idiomatic patterns observed in traditional
gamelan compositions, while the inclusion of detailed features,
such as positional data and beat-wise note tuples, ensures
fidelity to the cyclical and hierarchical nature of the music.

The dataset’s focus on a specific musical form and tuning
system provides a controlled environment for accurate mod-
eling, though the program’s design retains the flexibility to
adapt to other forms and tunings if appropriately trained. This
adaptability highlights the program’s broader applicability,
offering opportunities for exploring various gamelan styles or
even other forms of traditional ensemble music. The generated
notation preserves essential elements of Javanese gamelan’s
cultural and musical identity, making it a valuable tool for
both academic study and creative exploration.

Future work could explore integrating additional features,
such as dynamics, ornamentation, or variations in irama, to
further enhance the authenticity and richness of the generated
compositions. By bridging computational techniques with the
intricacies of traditional music, this approach contributes to the
ongoing dialogue between technology and cultural heritage,
ensuring the preservation and evolution of Javanese gamelan
music in modern contexts.
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APPENDIX A

COMPLETE IMPLEMENTATION OF THE COMPRESSION
PROGRAM

The complete implementation of the program can be ac-
cessed at https://github.com/carasiae/gamelan-skibidi
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